Advanced Analog Integrated Circuits

Device Models

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

The Problem With MOS Transistor Models

Square laws -= stuple -> Vm, MC08, 2

Simulator Models (BSIM, ...)

180nm NMOS model parameters:

1: type=n lmin=0.18e-6 lmax=0.501e-6 wmin=0.4e-6 wmax=10.001e-6. + minr=1e-60 tnom=25 version=3.1 tox=toxn xi=1.6e-7 nch=3.9e+17 . + lln=1 lwn=1 wln=1 wwn=1 lint=1e-8 ll=0 lw=0 lwl=0 wint=1e-8 wl=0 ww=0 wwl=0 . + mobmod=1 binunit=2 xl=-2e-8 + dlxn xw=0 + dxwn dwg=0 dwb=0 ldif=9e-8 . + hdif=hdifn rsh=6.8 rd=0 rs=0 vth0=0.48 + dvthn lvth0=1.18e-8 wvth0=-7.08e-9 + pvth0=-3.07e-15 k1=0.49 lk1=4.82e-8 wk1=-1.67e-8 pk1=-4.58e-15 . + k2=0.03 lk2=-2.01e-8 wk2=6.03e-10 pk2=5.87e-16 k3=0 dvt0=0 dvt1=0 + dvt2=0 dvt0w=0 dvt1w=0 dvt2w=0 nlx=0 w0=0 k3b=0 vsat=84638 lvsat=-0.0002 . + wvsat=0.001 pvsat=1.71e-11 ua=-5.07e-10 lua=-5.58e-17 wua=-4.34e-17 . + pua=2.42e-23 ub=1.98e-18 lub=4.99e-26 wub=-2.70e-26 pub=-5.53e-32 . + uc=7.19e-11 luc=1.46e-17 wuc=-3.71e-19 puc=-1.43e-23 rdsw=170 . + prwb=0 prwg=0 wr=1 u0=0.04 lu0=5.93e-10 wu0=-5.39e-10 pu0=5.68e-16 . + a0=0.54 la0=7.71e-8 wa0=1.31e-7 pa0=-6.57e-14 keta=-0.027 . + lketa=1.75e-9 wketa=2.62e-9 pketa=-9.24e-16 a1=0 a2=0.99 ags=0.039. + lags=-8.58e-9 wags=-1.49e-9 pags=6.84e-16 b0=0 b1=0 voff=-0.13. + lvoff=1.25e-10 wvoff=5.07e-9 pvoff=-2.82e-15 nfactor=1 cit=0.0002. + lcit=1.32e-10 wcit=4.29e-11 pcit=-1.97e-17 cdsc=0 cdscb=0 cdscd=0 eta0=-0.0003 + leta0=1.93e-10 weta0=3.35e-11 peta0=-1.54e-17 etab=0.0014 letab=-6.99e-10 . + wetab=-4.11e-11 petab=1.89e-17 dsub=0 pclm=0.97 lpclm=7.37e-8 + wpclm=2.16e-7 ppclm=-1.59e-15 pdiblc1=1e-6 pdiblc2=-0.0035 lpdiblc2=4.38e-9 + wpdiblc2=-1.24e-9 ppdiblc2=5.71e-16 pdiblcb=0.01 drout=0 pscbe1=4e+08 . + pscbe2=1e-6 pvag=0 delta=0.01 alpha0=6.27e-8 beta0=11.60 kt1=-0.23. + lkt1=1.96e-9 wkt1=1.35e-9 pkt1=1.97e-15 kt2=-0.027 lkt2=-3.83e-10 .

+ wkt2=-5.19e-9 pkt2=1.23e-15 at=20000 ute=-1.09 lute=-6.90e-8 .

Square Law Model

Middle of the Road: EKV Model

C. Enz and E. A.Vittoz, *Charge-Based MOS Transistor Modeling - The EKV Model for Low-Power and RF IC Design,* Wiley, 2006.

In saturation region:

$$I_D = 2nV_t^2 \cdot \mu C_{ox} \frac{W}{L} (q_s^2 + q_s)$$

$$V_{GS} - V_{TH} = nV_t[2(q_s - 1) + \ln(q_s)]$$

- Only 3 parameters: V_{TH} , n, $\mu C_{ox} \frac{W}{L}$ (functions of L, ...)
- Parametric in q_s , normalized source charge density
- Good agreement except at high I_D
- Still impractical for hand calculations

Designer's Wish list

~1) Accurately model redrikt logrand BSIM, PSP 2) "Model" simple (for hand calcs.

240B Approach

Lineas 5) Spead (BW, Es) 5 -> DR -> Power dissipation Re fine unto G-vo 4) Verity Iferad

Basic Transistor Model for Design

Transistor FOMs

i) Current efficiency $V \neq = \frac{2 I_{2}}{2}$ $f_{\tau} = \frac{1}{2\pi} \cdot \frac{y_{\tau}}{C_{GS}}$ 2) Catoft frag

FOMs for 180nm Process

Subthreshold Conduction (Weak Inversion)

Channel potential is higher than source → forward bias

D.L. Pulfrey, Understanding Modern Transistors and Diodes, Cambridge University Press, 2010.

 g_m/I_D or V*

Interchangeable, use whichever you prefer

f_T versus V^* (not V_{GS})

Relative Power Efficiency

Same data, but horizontal axis shows current efficiency relative to $V^* = 120 \text{mV} \left(\frac{g_m}{I_d} = 16.7 \text{ S/A}\right)$.

For the 180nm device, the f_T decreases by more than 20x when V^* is lowered to 80mV for a 50% higher current efficiency.

Increasing V^* to 180mV decreases the current efficiency by 50% but boosts f_T only by a factor 2.5.

Devices are rarely operated with *V*^{*} outside the range 80mV ... 200mV.

Composite $FOM = f_T \cdot \frac{g_m}{I_D}$

Noise Model

Extracting γ with Simulator

Intrinsic Gain

"Saturation"

a_v versus V_{DS}

Advanced Analog Integrated Circuits

Extrinsic Elements

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Extrinsic Circuit Elements

MOS Capacitances

Source and Drain Junctions – Layout

Individual devices:

$$M_{1}^{\text{M1}}$$

$$L_{1\mu\text{m}}^{\text{M1}}$$

$$M_{1}^{\text{M1}}$$

$$M_{1\mu\text{m}}^{\text{M1}}$$

$$M_{1\mu\text{m}}^{\text{M1}}$$

$$M_{2}^{\text{M1}}$$

Wide devices consisting of multiple individual ones wired in parallel:

AS = 1
$$\mu$$
m * W
PS = 4 μ m + W
AD = 1 μ m * W/2
PD = 2 μ m
e.g. NMOS, W=20 μ m, V_{sb}=0V
C_{sb} = 29fF
C_{db} = 10fF

Complete Small Signal Model

Gate Capacitance Summary

	Subthreshold	Triode	Saturation
C_{GS}	C _{ol}	$C_{GC}/2 + C_{ol}$	$2/3 C_{GC} + C_{ol}$
C_{GD}	C _{ol}	$C_{GC}/2 + C_{ol}$	C _{ol}
C_{GB}	C _{GC} // C _{CB}	0	0

$$C_{GC} = WLC_{ox} \qquad C_{ol} = WC'_{ol}$$
$$C_{CB} = \frac{1}{C_{js}}$$

Well Capacitance

Extrinsic Capacitances

Extrinsic Capacitance versus L

Advanced Analog Integrated Circuits

Design Flow

Bernhard E. Boser University of California, Berkeley <u>boser@eecs.berkeley.edu</u>

Copyright © 2016 by Bernhard Boser

Generic Design Flow

gun 2) Pic high Q v B In gh show 3 fre , 5 lous lo JU V hig И hig fc - 27 Cas 4) Verify. B. E. Boser EE240B - Device Models 31

Current Density \rightarrow W

